Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn.

نویسندگان

  • Kwan Yeop Lee
  • Kyungsoon Chung
  • Jin Mo Chung
چکیده

Recent studies suggest that reactive oxygen species (ROS) are functional messenger molecules in central sensitization, an underlying mechanism of persistent pain. Because spinal cord long-term potentiation (LTP) is the electrophysiological basis of central sensitization, this study investigates the effects of the increased or decreased spinal ROS levels on spinal cord LTP. Spinal cord LTP is induced by either brief, high-frequency stimulation (HFS) of a dorsal root at C-fiber intensity or superfusion of a ROS donor, tert-butyl hydroperoxide (t-BOOH), onto rat spinal cord slice preparations. Field excitatory postsynaptic potentials (fEPSPs) evoked by dorsal root stimulations with either Abeta- or C-fiber intensity are recorded from the superficial dorsal horn. HFS significantly increases the slope of both Abeta- and C-fiber evoked fEPSPs, thus suggesting LTP development. The induction, not the maintenance, of HFS-induced LTP is blocked by a N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoic acid (D-AP5). Both the induction and maintenance of LTP of Abeta-fiber-evoked fEPSPs are inhibited by a ROS scavenger, either N-tert-butyl-alpha-phenylnitrone or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl. A ROS donor, t-BOOH-induced LTP is inhibited by N-tert-butyl-alpha-phenylnitrone but not by D-AP5. Furthermore, HFS-induced LTP and t-BOOH-induced LTP occlude each other. The data suggest that elevated ROS is a downstream event of NMDA receptor activation and an essential step for potentiation of synaptic excitability in the spinal dorsal horn.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 2 The involvement of reactive oxygen species in long - term potentiation 3 in the spinal cord dorsal horn 4 5 6 Kwan

2 The involvement of reactive oxygen species in long-term potentiation 3 in the spinal cord dorsal horn 4 5 6 Kwan Yeop Lee, Kyungsoon Chung, Jin Mo Chung 7 8 9 Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 10 301 University Boulevard, Galveston, TX 77555-1069, USA 11 12 13 14 15 16 17 Running title: ROS in spinal cord LTP 18 19 20 21

متن کامل

Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord.

Synaptic transmission between dorsal root afferents and neurons in the superficial laminae of the spinal dorsal horn (laminae I-III) was examined by intracellular recording in a transverse slice preparation of rat spinal cord. Brief high-frequency electrical stimulation (300 pulses at 100 Hz) of primary afferent fibers produced a long-term potentiation (LTP) or a long-term depression (LTD) of f...

متن کامل

Involvement of CX3CL1/CX3CR1 Signaling in Spinal Long Term Potentiation

The long-term potentiation (LTP) of spinal C-fiber-evoked field potentials is considered as a fundamental mechanism of central sensitization in the spinal cord. Accumulating evidence has showed the contribution of spinal microglia to spinal LTP and pathological pain. As a key signaling of neurons-microglia interactions, the involvement of CX3CL1/CX3CR1 signaling in pathological pain has also be...

متن کامل

Nitric oxide-dependent long-term potentiation revealed by real-time imaging of nitric oxide production and neuronal excitation in the dorsal horn of rat spinal cord slices.

Nitric oxide (NO) is thought to be involved in the central mechanism of hyperalgesia and allodynia at the spinal level. Recently, we reported that NO played an important role in the induction of long-term potentiation (LTP) of synaptic strength in spinal dorsal horn, which is believed to underlie hyperalgesia and allodynia. In this study, to elucidate the relationship of NO to LTP in spinal dor...

متن کامل

Short- and long-term enhancement of excitatory transmission in the spinal cord dorsal horn by nicotinic acetylcholine receptors.

Spinal administration of nicotinic agonists can produce both hyperalgesic and analgesic effects in vivo. The cellular mechanisms underlying these behavioral phenomena are not understood. As a possible explanation for nicotinic hyperalgesia, we tested whether nicotinic acetylcholine receptors (nAChRs) could enhance excitatory transmission onto spinal cord dorsal horn neurons. Whole-cell patch-cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2010